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To appear in Journal of Reinforced Plastics and Comoosites

A Survey of Macroscopic Failure Criteria for Composite Materials*

STEPHEN W. TSAI

United States Air Force Materials Laboratory, Wright-Patterson

Air Force Base, Dayton, Ohio 45433 USA

Abstract - opular failure criteria of fiber-reinforced composite materials

are described and compared. These criteria are empirical and should only be

judged from the standpoint of the fitness to data and the ease of application.

The criteria for orthotropic plies of unidirectional composites are extensions

of those for isotropic materials. The quadratic criteria are considered to be

the most suitable for both isotropic and composite materials. Macroscopic

criteria ate essential for design and for providing guidelines for materials

improvements. Strictly speaking, failure criteria for multidirectional

laminants are valid up to the first-ply failure envelope; i.e., before transverse

cracking and delamination occur. Finally, conditions for fully optimized ply

properties are easily derived from the quadratic failure criterion

1. Introduction

Failure criteria have been in use for structural materials for centuries.

They can be divided into non-interactive criteria, such as the maximum stress

or maximum strain; and interactive criteria, such as the quadratic approxima-

tion. For brittle materials, the non-interactive criteria are commonly used;

for ductile materials with yielding, the interactive criteria are used. For

fiber-reinforced composite materials the popular failure criteria are, as

expected, extensions of those for isotropic materials. Material symmetry and

tensor transformation properties necessarily impose certain restrictions on

*Pased in part on the presentation at the International Colloqium on "Failure
Criteria of Structured Media," Grenoble, June 1983.



the algebraic form or the geometric shape of the failure criteria. Such

restrictions are present for both isotropic and 6rthotropic materials.

It is therefore useful to first examine these restrictions as they are applied

to isotropic materials. A comparison of similar criteria for orthotropic

materials in terms of flexibility, usefulness, and implications in materials

-improvements will be presented. We will limit our discussion to the plane

stress criteria as they appear in stress and strain space.

2. Maximum Stress Criteria for Isotropic Materials

. For isotropic materials, the non-interactive failure criteria can be

derived from an idealized uniaxial tension test shown in Figure 1. The

maximum stress criterion for the normal stresges is:

Ia~I < X(1)
la!l < x

Graphically, (1) is shown in Figure 2. If the uniaxial compressive strength

X' is different from tensile, the maximum stress criterion is

ax< X, a < X

(2)I'%1~ < x'IX

Graphically, (2) is shown in Figure 3.

Since stress components are governed by their transformation equations,

failure of an isotropic material must be independent of the rotation of the

coordinate axes. Thus, the failure of combined tension and compression stresses

must be equal to that of a pure shear. This is shown in Figure 4 using the

Mohr's circle. In fact failure is the same for any combined stress state

on the same Mohr's circle; i.e., failure will occur when I and R reach

certain prescribed values independent of the phase angle e0" Invariants I,
,.. ..



R, and phase angle U. are defined

I = p = 1/2 (ax + a y)

(3)

R2 . q2 + r 2 = 1/4( -a ) 2 + C2s

28 fi tan - 1 (q/r)
0

Because of the restriction imposed by the stress transformation

equations, the maximum stress criterion shown ir Figure 2 must be modified

by truncating the corners in the second and fourth quadrants. This is done

in Figure 5, where the p, q, and r axes are defined in (3) above. The lines

that truncate the failure envelope represent constant maximum shear strengths.

This is commonly known as the Tresca criterion. Based on this criterion,

S = X/2.- (4)

If the full failure envelope is drawn in stress-space, the cross section in

A, any constant p plane or in any q-r plane (where r is the third dimension)

must be circular. This stress space is also the Mohr's circle space with the

circle drawn normal to the p-axis in Figure 5. The combined restrictions

imposed by isotropy and stress transformation lead to a cylindrical failure

envelope for the maximum stress criterion; the generator is the p-axis in

Figure 5. The failure envelope is a circular cylinder with conical heads.

3. Maximum Strain Criteria for Isotropic Materials

Analogous to the maximum stress criterion, the biaxial failure strains due

to uniaxial tension and compression tests are shown in Figure 6 where tensile

and compressive strengths are assumed to be equal, and Poisson's ratio, to be

1/3. The failure envelope in strain space is also constrained by isotropy and

* strain transformation equations similar to that in the stress space. An

Uadmissible strain criterion is shown in Figure 7. Note the constant maximum

shear strain lines are drawn in the second and fourth quadrants.

3



To be consistent with the relation between the tensile and shear

strengths postulated in (4); i.e.,

S X/2

we must have

S
es E

X/2
E/2(1+v)

- (l+v)ex (5)

where E - shear modulus
S

es = maximum engineering shear strain

Comparisons between the maximum stress and maximum strain criteria are

shown in stress and strain spaces in Figure 8 and 9, respectively. The parameter

is the Poisson's ratio. Note when Poisson's ratio is zero, the two criteria

coincide. When Poisson's ratio is different from zero, the two failure

criteria are significantly different. The two criteria predict the same mode
of failure by shear , but different modes and numerical values for all other
biaxial stresses and strains. Thus the criteria do not uniquelv define modes of
4. Quadratic Criteria for Isotropic Materials

For isotropic materials, quadratic failure criteria are derivable from the

maximum strain energy and maximum distortional energy. For plane stress

states, they are expressed as:

for strain energy:

2 2 2 =2
So 

2vo o + cr + 2(1+v) a (6)

%x x y y s

or for distortional energy:

2 02 2  X2Cora+a+3a0.2 (7)
x xy y S

where X is the uniaxial tensile strength, as before. We can see that (7) is

a special case of (6), when the Poisson's ratio is 1/2; i.e., for incoopressible

materials, distortional energy is the total strain energy. The maximum shear

strength S can be related to the .uniaxial strength X using (6):

4
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2(l+')S = , or

r2 < X/S /3, or .71 < S/X < .58 (8)

This relation is slightly different from that in (4), where the ratio of the

strengths is 2 or .5, respectively. Graphically, (6) is shown in Figure 10

for Poisson's ratio equal to zero and 1/2. They are repeated in

Figure 11 together with the maximum stress (Tresca) criterion. In this

figure, the shear strength ratios of .5,

.58 and .71 cited in (4) and (8) are also shown. Similiar to Figure 5, the quad-

ratic criterion has circular cross sections generated about the p-axis. Thus,

the maximum stress criterion is not very different frcm -the maximum distortional

energy criterion.

The quadratic failure criterion in stress space can also be represented in

strain space by introducing the usual stress-strain relation in plane stress

Iinto (6), the resulting maximum strain energy criterion is

2 2 22 2(9

e2 + 2M + c2 + 2(1-v) (E:/2) = (1-v2) e2 (9)x X y y s X

The strain transformation is satisfied by this failure criterion for all values

of Poisson's ratio. We can also show that

/ex = /2(+v) (10)

Since Poisson's ratio varies from zero to one-half, we have an equation like

(8)

V2 < e /e < v (3-

where e s maximum shear strain; e - maximum longitudinal strain underS x

uniaxial stress. The failure criteria in strain space are plotted in

Figure 12. The limiting Poisson's ratio of zero and one-half for isotropic

materials are shown.

If tensile and compressive strengths for an isotropic material are

different, the resulting maximum stress criterion is shown in Figure 13, where

X' is the uniaxial compressive strength. The quadratic failure criterion can

5
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Palso be modified to include linear terms of stress or strain components. The

.resulting failure envelope will be a displaced ellipsoid along the p-axis.

The displaced center can be interpreted as the presence of initial stresses -

in the energy criterion. Shown in Figure 13 are 3 criteria fitting the same

strength data. The predicted shear strengths based on the tensile-compressive

strengths for the 3 criteria differ significantly (greater than those in

Figure 11). Furthermore, shear strength varies along the p-axis, i.e., it

is coupled with the absolute values of the tensile and compressive strengths.

This is often called the Colomb failure criterion.

4. Maximum Stress and Maximum Strain Criteria for Orthotropic Materials

For orthotrovic materials subjected to plane stress loading, it is

normally assumed that at least five strengths must be measured; viz:

Longitudinal tensile strength, X

Longitudinal compressive strength, X'

Transverse tensile strength, Y (12)

ITransverse compressive strength, Y'

Longitudinal/transverse shear strength, S

Having the measured strengths based on the ultimate values or some definable

yielding, we can easily construct the failure criteria based on extensions

of those for isotropic materials. The maximum stress criterion is shown in

Figure 14. The corners in the second and fourth quadrants are cut off by

dashed lines. One justification of cutting off the corners is that in the

limit when orthotropy disappears we can recover the maximum stress criterion

for the isotropic material shown as dashed lines in Figure 13. We cannot begin

with a rectangle in Figure 14 to recover a hexagon in Figure 13, or vice versa.

q.') Stress transformation relation is not used here because shear strength for an

orthotropic material is assumed to be an independent parameter, not related to

the strength measured under a combined tensile-compressive stress.

6
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Similarly, we can construct a maximum strain failure criterion using the

same measured strength data in (12). Assuming linear stress-strain relation

up to failure or yielding, we have the following failure strain parameters:

Longitudinal tensile strain, e = X/E

Longitudinal compressive strain, e = X'/EX x

Transverse tensile strain, e = Y/E (13)yy

Transverse compressive strain, e ' = Y'/EY Y

Longitudinal/transverse shear strain, e = S/E

With these strains, we can construct the maximum strain failure criterion in

strain space. Note the uniaxial tensile and compressive tests follow loading

lines with slopes equal to the longitudinal and transverse Poisson's ratios.

We can cut off the corners shown by the dashed lines if we invoke the same

rationale as we did in Figure 14. We can then claim that the maximum strain

criterion for an orthotropic material in Figure 15. In the limit it becomes that

jfor an isotropic material in Figure 7, when orthotropy disappears and tensile

and compressive strengths are equal.

Traditionally, the maximum stress or maximum strain criterion for an

orthotropic material is represented by a rectangular box having six plane faces.

Since shear strength is symmetrical, there are only five independent plane

faces. But if we invoke the hexagonal cross sections by cutting off the

corners in Figure 14 or 15, we have an octahedral. With symmetry in shear,

there will be seven independent plane faces. To use the maximum stress or

maximum strain failure criterion, we need seven inequalities, which is

numerically time consuming. The quadratic criterion is much easier to use

because it is a single-valued fraction.

If we rotate the symmetry axes of our orthotropic material, we can define

the resulting failure envelope by applying the stress or strain transformation

7
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to the respective failure criterion. We can easily show that the failure

envelope undergoes a rigid body rotation about the p-axis as the symmetry

axes of the orthotropic material rotates. The p-axis is shown in Figures 14

and 15. This is exactly the same axis for the Mohr's circle rotation where

the angular displacement is twice that of the reference or symmetry axes. This

is shown in Figure 16 where the projected view of p = 0 plane is also shown.

The first-ply failure (FPF) envelope is the innermost locus of a multi-

directional laminate consisting of plies with arbitrary orientations.

Because of the rigid-body rotation about the p-axis, the FPF envelope

approaches a circular cylinder generated about the p-axis as the number of

ply orientations increase. For the maximum stress or strain criterion, the

FPF envelope will also be a circular cylinder, the radius of which along the

p-axis is the minimum value of R defined in (3). This minimuT' value may be

one-half of the shear strength; i.e., the value along the r-axis (or q = 0)

in Figure 16. The minimum value may also be the smallest q for a given p in

the r = 0 plane.

-V 5. Quadratic Criteria for Orthotropic Materials

The quadratic failure criteria for orthotropic materials has been proposed

• . by many workers for at least 20 years. One often quoted source is that by Golden

and Kopnov [1] and other workers in the USSR. It was postulated that the most

general failure criterion in terms of stress components would be:

[Fii]a+ [FiJa ia]8 + [Fkij kriGJk] ... = 1 (14)

The quadratic criterion, in a simplified form, is

F.O + oi. = (15)
ii ijI (15)

A L
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It is easier to use strain space to represent the failure envelopes of multi-

directional composite laminates because laminate strains and ply strains are

equal under in-plane stresses. Thus, strain space envelopes are independent

oF the ply orientations in a laminate; e.g., a O-degree envelope is fixed in

strain space whether or not other ply orientations exist in a given laminate.

PThe conversion from stress to strain space is simple if the stress-strain

relation to failure is linear. This is a good approximation for most composite

-aterials. We can show the quadratic criterion of (15) in strain ace [2] as:

GiCi+ GiC = 1 (16)

where
i = QijF

G = QikQjZFkz

Qij = ?lane stress stiffness modulus

4*: By using unlaxial and pure shear tests-, the nonzero components of F and F. car, be
3- 2

calculated from the measured strengths in (12), as follows:

F I/XX' , F = I/YY' , F I/S2

xx yy ss

F - I/X- l/X' , F l/Y - IY' (17)x y

.

'4
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Every material parameter in (15) can be determined by simple tests except

the interaction term F . In the absence of a truly biaxial test, we can only
xyI

postulate its value. It is easier to assess the value of this interaction term

U.' by its normalized value. We define:

F* = normalized interaction term
xy

= F / F F (iS)xy xx yy

'. ' The quadratic failure envelope is

an ellipsoid and is constrained geometrically by

-1 < F* < 1 (.9)xy

The quadratic envelope becomes a hyperboloid when the normalized interaction

term becomes greater than I or less than -1. At the absolute value of unity,

we have two parallel olanes.

Hill [3] proposed a special form of (15)

Fi .o a. = 1 (20)

This was intended for orthotropic materials with equal tensile an! compressive

strengths. The linear terms in (15) are zero for this case. There is another

assumption in Hill's postulate that

Fy- -1/2X2 or F* = -Y/2X (21)
xy xy

For highly orthotropic materials; i.e.

X >> Y, or F* = 0 (22)
xy

Hoffman [4] kept the linear terms in(15)but used the same near zero

interaction term as in (21)

We proposed [5] a more general interaction term than that in (21). A

L" generalized von-Mises criterion for orthotropic materials was defined by [2]:

y - (23)

We can also show graphically that the quadratic envelopes for most

"" composite materials are "well behaved" if the normalized interaction term

is bounded by

10
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-1/2 < F* < 0 (24)
xy

These limits are more restrictive than the maximum bounds in (19). The

limits of (24) would ensure that the envelopes are not excessively elongated,

and, in addition, are oriented in the first and third quadrants similar to the

tilt of isotropic materials in Fig. 10, [6]. These bounds are also consistent

4- with those for Poisson's ratios of isotropic materials. If we wish to recover

the failure criterion based on strain energy in the limit, the bounds in (24)

would be appropriate. It is implied here that the normalized interaction term

may be related to the effective Poisson's ratios of the orthotropic ply, or
that of a quasi-istropic laminate consisting of the orthotropic plies.

Using the strength data for a typical graphite-epoxy composite T300/5208

from [2], the quadratic failure envelopes for a laminate with 4 ply orientations:

0, 90, ±45 degrees are plotted in Figures 17 and 18 with values of F* equal toxy

-1/2 and 0, respectively. Although the outlines of the envelopes are different,

the FPF (first-ply failure) envelopes remain insensitive to F* within the

xy

range specified by (24). Since buckling may intercede, the third quadrant

(compression-compression straining) is excluded from this comparison. Figure 17

the generalized von Mises [2]; Figure 18, essentially Hoffman's [3].

The maximum stress and maximum strain criteria for this composite material

(T300/5208) can also be plotted using the same data as those in Figure 17 and 18.

All six failure criteria are plotted in Figure 19. Again, the FPF envelopes are

not significantly different from the quadratic criterion if the compression-

compression quadrant is excluded. For the FPF envelope, the cross section at

any constant p value approaches circular as the number of ply orientations

increase. This envelope is approximately ellipsoidal for every criterion. We

also see that the truncated maximum stress and maximum strain criteria, shown in

Figs.14 and 15, yield nearly the same FPF envelope as the "box " criteria. Thus,

if we deal with multidirectional laminates as we normally do, the resulting FPF

..... ~ ~ ._ .- ,_....... .. ,% .. ., .. ..,. X~ . ;. ** -u . :. .-.... , ... -..



V-7--rr--V . . . .

,% %,! envelope is insensitive to the failure criteria which we have discussed. This

leads us to select the quadratic :riteria as the preferred based primarily on

two points:

" They are easy to use by virtue of being single valued functions.

o They are scalar products of tensors, which are mathematically sound

and have all the appropriate invariants and transformation properties

established and ready to be used without further proof.

The uncertainty of the interaction term is not a severe limitation because for

most materials the effect on the FPF envelope is negligible.

6. Experimental Data

Most data in composite laminates are derived- from uniaxial tension tests.

Off-axis unidirectional data exist extensively. It is well known that the

predicted off-axis strengths by the maximum stress, maximum strain and

quadratic criteria, and the measured data are all in close agreement to one

another. Thus the off-axis data cannot be used to determine which criterion is

best.

The next series of uniaxial tests are usually the biaxial laminates; viz.,

cross-ply (0 and 90 degrees) or angle ply (±O) laminates. The ply stress is nov

quite different from the uniaxial laminate stress. Each ply is subjected to

biaxial or combined state of stress. More different ply stresses can be induced

by using tri-directional laminates such as 0 or 90, and ±O degrees. Soni [7)

made comparisons of the uniaxial tensile strength of tr-directional laminates.

The results are shown in Figure 20 and 21. The FPF predictions by various crite

remain approximately the same. Measured strength data in Figure 20 were higher

.. than the FPF value. The 0-degree ply in the laminate continued to carry load

after the FPF. The measured strengths in Figure 21 were essentially those FPF

predictions. The laminate failed to carry more load after the FPF. The

"unbroken" angle plies, unlike 0-degree plies in Figure 20, could not carry

12



the prevailing load after the FPF.

We believe that failure criteria are not valid after the FPF. Plies

within a laminate become broken by internal damage such as transverse cracks

and delaminations which accumulate as applied load increases. The classical

laminated plate theory is not strictly valid for broken, discontinuous materials.

By reducing ply stiffness we can simulate degraded, damaged plies. This is

only approximate, and cannot be used to describe failure. A more accurate

theory that reflects a damaged material is needed. In the absence of a

realistic theory, we recommend systematic testing to ensure safety of structures.

Vhile Figure 20 shows that the degraded stiffness approach after the FPF

may be valid, Figure 21 completely refutes this approach; post-FPF strength is zet

Kim [8] showed that if edge delamination of a multi-directional laminate

coupon is prevented by edge reinforcement, the measured strength is increased

considerably and approaches that predicted by the quadratic failure criterion.

Delamination, as a form of internal damage, is detrimental to the laminate

strengph. This mode of failure, however, can be easily eliminated by edge

reinforcement.

Based on available data, it can be concluded that

o Small difference exists among various failure criteria. This is

particularly true for the FPF envelope which is approximately

e]lipsoidal for all criteria.

0 Predicted uniaxial strengths of multi-directional laminates can be

confirmed by experimental data if internal damage is kept to a

minimum. The damage will lower the laminate strength.

0'%Ie believe that the quadratic criterion is the easiest to use because

it is a single-valued function. The maximum stress and maximum strain

criteria are numerically difficult to use whether it is a cube or

13
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octahedron. Since all criteria yield about the same answer and are

not related to the mechanisms of failure, why not use the easiest?

,Although all failure criteria are empirical in nature, the quadratic

criteria are the best mathematically from the standpoint of

invariance, symmetry, algebraic forms, and geometric shapes.

7. Other Criteria

There are many practical considerations to failure criteria. They must

be easy to use. They must contain minimum number of material constants. They

# %. must provide smooth transition from orthotropy to isotropy, or vice versa.

The truncation of the "boxy" criteria is done to. ensure this smooth

transition. Forced empirical fit from one set of data in one quadrant may

lead to a bad fit in another quadrant.

In the absence of biaxial tests, the interaction term Fxy is a floating

constant. Chamis [9] proposed the use of different F for differentxy

quadrants. With additional constants, the failure envelope is customized

for each quadrant. Using the same strength data of T300/5208 from [2), the

customized failure envelope in strain space is shown in Figure 22, for a

n, 90, ±45 degrees laminate. The failure envelope is segmented and not

well behaved. The FPF envelope however is not significantly different from

those of other criteria in Figure 19.

Rosen [10] also suggested the use of different F for differentxy

V° quadrants. Beyond having more coefficients for better data fit, there is

no physical or mathematical justification. In fact, mathematically the

functional dependency of the stress components such as that in (14) and (15)3."

is cormitted. The signs of the stress components are built in. To the

* 14
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first order approximation, all strength parameters F and F are constants and

ij

cannot vary wi

., sign of the stress components. A higher order approximation may bring in the

derenlency of the strength parameters on the stress invariants. But such higher

order theory brings with it many other complications beyond the utility of

failure criteria. We cannot see justification for tampering with Fxy.

If more constants are needed for better data fit, there are two more

straight forward yet mathematically consistent options than the use of

multiple interaction terms suggested by Chamis [9] and Rosen [Li]. The easy

options are the three-dimensional quadratic criterion for a transversely

isotropic material, and the-two-dimensional-cubic criterion.

i
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We can easily extend from the plane stress criterion to the 3-dimensional

criterion for a transversely isotropic material. 
Assuming that the y-z plane

is isotropic, (15) can be written as:S2 2) 2 2+

F G + F (a + a + F (a + a F)+ t 2FXx x y z ss s u t

+ 2F (a + )a + 2F aaxy YX yz y z

+ F + F (CY + az (25)x x y yz

where a = a xz t M a xz . Similar to (17) we can show that

I F~tt =1T
.xz

F =F - /2 F- (26)
yz yy tt/Ftt , 2T2

where T is the shear strength in the y-z plane. For a quadratic

3-dimensional criterion of a transversly isotropic material we only need

one more constant T the transverse -transverse shear strength. But

the more difficult problem will be the 3-dimensional stress analysis toSto

- determine a (ua ) , a (a yz) and a ., ut yz

Another approach to a higher order failure envelope is to use

the "cubic" terms in (14). Here sixth order strength parameters are needed.

Wu [6) and Tennyson et al [11] showed that with four additional constants

Fxxy, Fyyx , Fxss , Fyss (27)

the cubic criteria in (14) can provide improved fit of data.

, But the measurement of four additional constants is not easy. Although

the need for the cubic terms is not settled, their impact on the FPF is

*. not significant.

8. Optimized Plies

.An optimized ply from the strength standpoint is achievable if the

failure criterion of the ply is invariant; i.e,, it is the same for all ply

16
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orientations. All plies would fail simultaneously; i.e., the FPF, the LPF (last

ply failure), and the IPF (intermediate ply failure) will be coincident.

How do we do it? Do we improve the laminate strength after we

produce this optimized ply?

Knight

[12] \ used the quadratic failure criterion of (15) and derived the exact

relations for optimized plies. The simple key is to produce a failure criterion

of a 0-degree ply that is symmetrical about the p-axis in strain space. Since ply

rotation by e is a rigid body rotation about the p-axis by 26, failure criteria for

all ply orientations will be coincident. The shear strength must have such a value

that would ensure circular crosssections for any value along the p-axis.

The failure envelopes of a glass-epoxy composite Scotchply 1002, with

ply orientations between 0 and 90 degrees at 15-degree intervals are shown

in Figure 23. The strength data for this composite is taken from [2]. The

basic tensile and compressive failure strains defined in (13) are shown as

black dots. As we go from a, b, c to d, we progressively optimize the failure

strains. The disparity of failure envelopes is reduced. Ultimately, a fully

optimized ply has only one failure envelope independent of the ply orientation.

Using the quadratic criterion, we can collapse failure envelopes of different

ply orientations onto one envelope. This is not possible if the maximum stress

or maximum strain criterion is used,

because the rotation of a cube or octahedron does not create a smooth envelope.
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Finally, we need to know if an optimized ply is in fact stronger than the

original unoptimized ply. This answer is a definite yes. The increase in the

FPF envelope in Figure 23 is dramatic. We can also show the increase in stress

space, although the strength improvement is smaller. The increase in the ultimat

strains does not take into account the possible reduction in stiffness. The

II: net result is that the effective strength in stress space is increased by a

lesser degree. In terms of materials engineering, an optimized ply usually

calls for a dramatic increase in the transverse tensile strain in most current

composite materials. A softer matrix is in the proper direction to improve

laminate strength. Woven fabric is a good composite material because the failure

strains are nearly identical in two principal'directions.

8. Summary

We would like to summarize our views on macroscopic failure criteria

for orthotropic materials.

o All criteria provide reasonable and nearly identical prediction of the

FPF (first-ply failure) ; e.g., see Figure 19.

o Prediction of failure subsequent to FPF is not always reasonable or

reliable; e.g., see Figure 21.
I.

o Extensions of the quadratic criterion beyond the present can be done.

Simple examples include the 3-dimensional quadratic criterion or the

2-dimensional cubic criterion.

o Ply properties can be optimized by creating symmetry about the p-axis.

This trend is independent of the choice of failure criteria.

We recommend the quadratic criterion for the following reasons:

" It is easy to use.

o It is a single-valued function. It is particularly suited for

numerical solution, such as the use of strength ratios [2].

18
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0 It is based on mathematically rigorous framework; i.e., scalar products,

coordinate transformation, invariants, and symmetry are well established

entities and easy to work with. Extension to 3-dimensional criteria

for a transversely isotropic material in (25) is simple.

It is not possible to relate the complex mechanisms and modes of failure to all

the macroscopic failure criteria mentioned in this survey. It is safe to

say that interactions exist among the various mechanisms and modes. Non-

interactive criteria such as the maximum stress and maximum strain are

undoubtedly gross simplifications. The quadratic criteria have some

interactions built in, but are far from adequate to deal with the exact

mechanics of failure. But quadratic criteria are the best we have and they

serve the purpose of design, guidelines for materials and processing

improvements.
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FIGURE CAPTIONS/TSAI

Fig. 1. Uniaxial Tension Test for a Linear Material

Fig. 2. Maximum Stress Criterion with Equal Tensile and Compressive Strengths

Fig. 3. Maximum Stress Criterion with Compressive StrLngth Higher than Tensile
Strength. The Stress-Strain Curve is Shown on the Left.

Fig. 4. Mohr's Circle in Stress Space Showing the Relation Between
Tension-Compression and Pure Shear States of Stress ; a is Shear Stresss

Fig. 5. Maximum Stress Criterion for Isotropic Materials. The Equivalencc of
the Tension-Compression and Shear Strengths is Shown. The Failure
Surface in the q-r Space must have Circular Crosssections to Satisfy the
Mohr's Circle Relations.

Fig. 6. Biaxial or Combined Failure Strains of an Isotropic Material
Resulting from Uniaxial Tensile or Compressive Stress.

Fig. 7. Maximum Strain Criterion for an Isotropic Material with Equal Tensile
and Compressive Strengths. The "Box" Criterion is Modified to
Satisfy Strain Transformation Relation Similar to the Modified
Maximum Stress Criterion in Fig. 5.

Fig. 8. Maximum Strain Criteri&'for Different Poisson's Ratios in
Stress Space. The Slopes and Coordinates Intercept for the Case
of V-1/3 are Shown.

Fig. 9. Using the Same Combined Failure Strains, Maximum Stress Criteria for
the Limiting Poisson's Ratios of an Isotropic Material in

Strain Space.

Fig. 10. Quadratic or Energy Criteria for an Isotropic Material in Stress
Space with the Limiting Poisson's Ratio.

Fig. 11. The Relation Between the Tension-Compression and Shear Strengths are
Different Depending on the Failure Criteria and the Poisson's Ratio.

Fig. 12. Limiting Quadratic Failure Criteria in Strain Space. The Tilt of the
Ellipse is Different from that in Fig. 10 for the IncompressibleMaterial Because the Sign of the Interaction Shown in (6) and (9)

are Different.i-

Fig. 13. Failure Criteria for an Isotropic Material with Different Tensile and
Compressive Strengths. The Maximum Stress Criterion is in Dashed Lines;
the Quadratic Criteria can be Fitted with Different DisDlacement of
the Center and Different "Effective Poisson's Ratios %#'

Fig. 14. Maximum Stress Criterion for an Orthotropic Material with Different Tensi
and Compressive Strengths. The "Box" Criterion is Shown in Solid Lines;
the Truncated Criterion Shown in Dashed Lines.

4 Fig. 15. Maximum Strain Criterion for an Orthotropic Material. The Corners in the
Second and Fourth Quadrants have Been Truncated by Dashed Lines.
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Fig. 16. A Rigid Body Rotation of Failure Envelopes About the p-axis (from
q to q' axis) by 28 as the Material Symmetry Axis Rotation (from X
to 7' axis) of an Orthotropic Material by 8.

Fig. 17. Quadratic Failure Criterion of 0, ±45, and 90 Degree Ply Orientations
of T300/5208 Using F* = -1/2.• xy

Fig. 18. Quadratic Failure Criterion of 0, ±45, and 90 Degree Ply Orientations
of T300/5208 Using F* = 0.

xy
Fig. 19. Comparison of Failure Criteria for T300/5208 with 0, ±45, and 90 Ply

Orientations. Both the "boxy" and truncated Maximum Stress and Strain
Criteria are Shown. The predicted FPF is shown in shaded area.

Fig. 20. Prediction and Data of AS/3501 Tri-Directional Laminats [0/±01] from
[7].

Fig. 21. Prediction and Data of AS/3501 Tri-Directional Laminats [90/±O] from
[7].

Fig. 22. The Segmented Quadratic Failure Criteria with Different Interaction

Terms in Different Quadrants [9].

Fig. 23. Gradual Improvement in Strength of Scotch-Ply 1002 from (a), (b), (c),
to (d), the Fully Optimized Ply where Failure Envelope of all Ply
Orientations Coincide.
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